top of page

Red River College: Golf Course Monitoring

LOCATION: Winnipeg, MB INDUSTRY: Investigation

Details:

SMT designed custom wireless CO2 sensors to monitor winterization techniques on golf greens in Manitoba. See full article by Red River College Applied Research here.

Last year Geisel was awarded with $9,125 through the 2013 College Applied Research Development (CARD) Fund for a joint project with the Manitoba Golf Superintendent Association (MGSA) on the evaluation of over-wintering systems of putting greens.

For Geisel, a horticulturist who is an instructor in the Greenspace Management program at RRC, working on golf greens provided a unique opportunity.

The MGSA pitched in nearly $12 thousand for the study, bringing the project’s total to $21,510 over the course of several years.

The study involves observing three of the in-play greens at five Manitoba golf courses – those being Boissevain, Elmhurst, St. Charles, Pinawa, and Bel Acres – under three different environments. Some of the greens have wintered under a semi permeable plastic mesh cover that allows water and air to travel through; another set have been housed under a sandwich-like design, featuring a semi permeable cover with about 18 inches of flax straw with an impermeable tarp on top; while the remaining greens were the control, featuring just a sand base over the greens.

Under the tarps Geisel set up sensors from SMT Research – whose equipment has frequently been utilized by AR&C at our Centre for Applied Research in Sustainable Infrastructure to test air leakage of buildings and fenestration materials.

On the greens, the SMT sensors monitored the conditions faced by the grasses over fall and winter, chiefly measuring temperature and carbon dioxide levels.

This is the first such study of its kind in Manitoba, while previous over-wintering golf green studies in Alberta, in Ontario at the University of Guelph, and in the Northeastern US and Finland have all been performed in labs or controlled environments. Geisel and the superintendents have found both fungal disease and mechanical damage, but it is too early to tell if/how the SMT sensors can pinpoint the root causes and how those can be addressed in the fall and over the winter.

The findings of this project could benefit both the project partner as well as golf courses residing in Northern climates. Golf courses might be able to better maintain greens despite winter conditions — saving them from having to offer discounted green fees in the spring as well as avoiding costly renovations to damaged/dead greens.

Included Sensors:

  • Custom wireless CO2 sensors for monitoring winterization techniques

Featured Posts
Recent Posts
Archive
bottom of page